Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Estimation of distribution algorithm
Estimation of distribution algorithm. For each iteration i, a random draw is performed for a population P in a distribution PDu. The distribution parameters PDe are then estimated using the selected points PS. The illustrated example optimizes a continuous objective function f(X) with a unique optimum O. The sampling (following a normal distribution N) concentrates around the optimum as one goes along unwinding algorithm.

Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs),[1] are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima.[2][3][4]

EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an implicit distribution defined by one or more variation operators, whereas EDAs use an explicit probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDAs can be used to solve optimization problems defined over a number of representations from vectors to LISP style S expressions, and the quality of candidate solutions is often evaluated using one or more objective functions.

The general procedure of an EDA is outlined in the following:

t := 0
initialize model M(0) to represent uniform distribution over admissible solutions
while (termination criteria not met) do
    P := generate N>0 candidate solutions by sampling M(t)
    F := evaluate all candidate solutions in P
    M(t + 1) := adjust_model(P, F, M(t))
    t := t + 1

Using explicit probabilistic models in optimization allowed EDAs to feasibly solve optimization problems that were notoriously difficult for most conventional evolutionary algorithms and traditional optimization techniques, such as problems with high levels of epistasis[citation needed]. Nonetheless, the advantage of EDAs is also that these algorithms provide an optimization practitioner with a series of probabilistic models that reveal a lot of information about the problem being solved. This information can in turn be used to design problem-specific neighborhood operators for local search, to bias future runs of EDAs on a similar problem, or to create an efficient computational model of the problem.

For example, if the population is represented by bit strings of length 4, the EDA can represent the population of promising solution using a single vector of four probabilities (p1, p2, p3, p4) where each component of p defines the probability of that position being a 1. Using this probability vector it is possible to create an arbitrary number of candidate solutions.

Estimation of distribution algorithms (EDAs)

This section describes the models built by some well known EDAs of different levels of complexity. It is always assumed a population at the generation , a selection operator , a model-building operator and a sampling operator .

Univariate factorizations

The most simple EDAs assume that decision variables are independent, i.e. . Therefore, univariate EDAs rely only on univariate statistics and multivariate distributions must be factorized as the product of univariate probability distributions,

Such factorizations are used in many different EDAs, next we describe some of them.

Univariate marginal distribution algorithm (UMDA)

The UMDA[5] is a simple EDA that uses an operator to estimate marginal probabilities from a selected population . By assuming contain elements, produces probabilities:

Every UMDA step can be described as follows

Population-based incremental learning (PBIL)

The PBIL,[6] represents the population implicitly by its model, from which it samples new solutions and updates the model. At each generation, individuals are sampled and are selected. Such individuals are then used to update the model as follows

where is a parameter defining the learning rate, a small value determines that the previous model should be only slightly modified by the new solutions sampled. PBIL can be described as

Compact genetic algorithm (cGA)

The CGA,[7] also relies on the implicit populations defined by univariate distributions. At each generation , two individuals are sampled, . The population is then sorted in decreasing order of fitness, , with being the best and being the worst solution. The CGA estimates univariate probabilities as follows

where, is a constant defining the learning rate, usually set to . The CGA can be defined as


Zdroj: Wikipedia.org - čítajte viac o Estimation of distribution algorithm





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.