Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Length contraction
 
Wheels which travel at 9/10 the speed of light. The speed of the top of a wheel is 0.994 c while the speed of the bottom is always zero. This is why the top is contracted relative to the bottom. This animation is made with the assumption that the spokes of a wheel are much more elastic than its circumference. Otherwise there could be a rupture of the spokes or of the circumference. In the rest frame of the center of a wheel, wheels are circular and their spokes are straight and equidistant, but their circumference is contracted and exerts a pressure on the spokes.

Length contraction is the phenomenon that a moving object's length is measured to be shorter than its proper length, which is the length as measured in the object's own rest frame.[1] It is also known as Lorentz contraction or Lorentz–FitzGerald contraction (after Hendrik Lorentz and George Francis FitzGerald) and is usually only noticeable at a substantial fraction of the speed of light. Length contraction is only in the direction in which the body is travelling. For standard objects, this effect is negligible at everyday speeds, and can be ignored for all regular purposes, only becoming significant as the object approaches the speed of light relative to the observer.

History

Length contraction was postulated by George FitzGerald (1889) and Hendrik Antoon Lorentz (1892) to explain the negative outcome of the Michelson–Morley experiment and to rescue the hypothesis of the stationary aether (Lorentz–FitzGerald contraction hypothesis).[2][3] Although both FitzGerald and Lorentz alluded to the fact that electrostatic fields in motion were deformed ("Heaviside-Ellipsoid" after Oliver Heaviside, who derived this deformation from electromagnetic theory in 1888), it was considered an ad hoc hypothesis, because at this time there was no sufficient reason to assume that intermolecular forces behave the same way as electromagnetic ones. In 1897 Joseph Larmor developed a model in which all forces are considered to be of electromagnetic origin, and length contraction appeared to be a direct consequence of this model. Yet it was shown by Henri Poincaré (1905) that electromagnetic forces alone cannot explain the electron's stability. So he had to introduce another ad hoc hypothesis: non-electric binding forces (Poincaré stresses) that ensure the electron's stability, give a dynamical explanation for length contraction, and thus hide the motion of the stationary aether.[4]

Albert Einstein (1905) is credited[4] with removing the ad hoc character from the contraction hypothesis, by deriving this contraction from his postulates instead of experimental data.[5] Hermann Minkowski gave the geometrical interpretation of all relativistic effects by introducing his concept of four-dimensional spacetime.[6]

Basis in relativity

In special relativity, the observer measures events against an infinite latticework of synchronized clocks.

First it is necessary to carefully consider the methods for measuring the lengths of resting and moving objects.[7] Here, "object" simply means a distance with endpoints that are always mutually at rest, i.e., that are at rest in the same inertial frame of reference. If the relative velocity between an observer (or his measuring instruments) and the observed object is zero, then the proper length of the object can simply be determined by directly superposing a measuring rod. However, if the relative velocity is greater than zero, then one can proceed as follows:

Length contraction: Three blue rods are at rest in S, and three red rods in S'. At the instant when the left ends of A and D attain the same position on the axis of x, the lengths of the rods shall be compared. In S the simultaneous positions of the left side of A and the right side of C are more distant than those of D and F, while in S' the simultaneous positions of the left side of D and the right side of F are more distant than those of A and C.

The observer installs a row of clocks that either are synchronized a) by exchanging light signals according to the Poincaré–Einstein synchronization, or b) by "slow clock transport", that is, one clock is transported along the row of clocks in the limit of vanishing transport velocity. Now, when the synchronization process is finished, the object is moved along the clock row and every clock stores the exact time when the left or the right end of the object passes by. After that, the observer only has to look at the position of a clock A that stored the time when the left end of the object was passing by, and a clock B at which the right end of the object was passing by at the same time. It's clear that distance AB is equal to length of the moving object.[7] Using this method, the definition of simultaneity is crucial for measuring the length of moving objects.

Another method is to use a clock indicating its proper time , which is traveling from one endpoint of the rod to the other in time as measured by clocks in the rod's rest frame. The length of the rod can be computed by multiplying its travel time by its velocity, thus in the rod's rest frame or in the clock's rest frame.[8]

In Newtonian mechanics, simultaneity and time duration are absolute and therefore both methods lead to the equality of and . Yet in relativity theory the constancy of light velocity in all inertial frames in connection with relativity of simultaneity and time dilation destroys this equality. In the first method an observer in one frame claims to have measured the object's endpoints simultaneously, but the observers in all other inertial frames will argue that the object's endpoints were not measured simultaneously. In the second method, times and are not equal due to time dilation, resulting in different lengths too.

The deviation between the measurements in all inertial frames is given by the formulas for Lorentz transformation and time dilation (see Derivation). It turns out that the proper length remains unchanged and always denotes the greatest length of an object, and the length of the same object measured in another inertial reference frame is shorter than the proper length. This contraction only occurs along the line of motion, and can be represented by the relation

where

  • is the length observed by an observer in motion relative to the object
  • is the proper length (the length of the object in its rest frame)
  • is the Lorentz factor, defined as where
    • is the relative velocity between the observer and the moving object
    • is the speed of light

Replacing the Lorentz factor in the original formula leads to the relation

In this equation both and are measured parallel to the object's line of movement. For the observer in relative movement, the length of the object is measured by subtracting the simultaneously measured distances of both ends of the object. For more general conversions, see the Lorentz transformations. An observer at rest observing an object travelling very close to the speed of light would observe the length of the object in the direction of motion as very near zero.

Then, at a speed of 13400000 m/s (30 million mph, 0.0447c) contracted length is 99.9% of the length at rest; at a speed of 42300000 m/s (95 million mph, 0.141c), the length is still 99%. As the magnitude of the velocity approaches the speed of light, the effect becomes prominent.

Symmetry

The principle of relativity (according to which the laws of nature are invariant across inertial reference frames) requires that length contraction is symmetrical: If a rod is at rest in an inertial frame , it has its proper length in and its length is contracted in . However, if a rod rests in , it has its proper length in and its length is contracted in . This can be vividly illustrated using symmetric Minkowski diagrams, because the Lorentz transformation geometrically corresponds to a rotation in four-dimensional spacetime.[9][10]

Magnetic forces

Magnetic forces are caused by relativistic contraction when electrons are moving relative to atomic nuclei. The magnetic force on a moving charge next to a current-carrying wire is a result of relativistic motion between electrons and protons.[11][12]

In 1820, André-Marie Ampère showed that parallel wires having currents in the same direction attract one another. In the electrons' frame of reference, the moving wire contracts slightly, causing the protons of the opposite wire to be locally denser. As the electrons in the opposite wire are moving as well, they do not contract (as much). This results in an apparent local imbalance between electrons and protons; the moving electrons in one wire are attracted to the extra protons in the other. The reverse can also be considered. To the static proton's frame of reference, the electrons are moving and contracted, resulting in the same imbalance. The electron drift velocity is relatively very slow, on the order of a meter an hour but the force between an electron and proton is so enormous that even at this very slow speed the relativistic contraction causes significant effects.

This effect also applies to magnetic particles without current, with current being replaced with electron spin.[citation needed]

Experimental verifications

Any observer co-moving with the observed object cannot measure the object's contraction, because he can judge himself and the object as at rest in the same inertial frame in accordance with the principle of relativity (as it was demonstrated by the Trouton–Rankine experiment). So length contraction cannot be measured in the object's rest frame, but only in a frame in which the observed object is in motion. In addition, even in such a non-co-moving frame, direct experimental confirmations of length contraction are hard to achieve, because (a) at the current state of technology, objects of considerable extension cannot be accelerated to relativistic speeds, and (b) the only objects traveling with the speed required are atomic particles, whose spatial extensions are too small to allow a direct measurement of contraction.

However, there are indirect confirmations of this effect in a non-co-moving frame:

  • It was the negative result of a famous experiment, that required the introduction of length contraction: the Michelson–Morley experiment (and later also the Kennedy–Thorndike experiment). In special relativity its explanation is as follows: In its rest frame the interferometer can be regarded as at rest in accordance with the relativity principle, so the propagation time of light is the same in all directions. Although in a frame in which the interferometer is in motion, the transverse beam must traverse a longer, diagonal path with respect to the non-moving frame thus making its travel time longer, the factor by which the longitudinal beam would be delayed by taking times L/(cv) and L/(c+v) for the forward and reverse trips respectively is even longer. Therefore, in the longitudinal direction the interferometer is supposed to be contracted, in order to restore the equality of both travel times in accordance with the negative experimental result(s). Thus the two-way speed of light remains constant and the round trip propagation time along perpendicular arms of the interferometer is independent of its motion & orientation.
  • Given the thickness of the atmosphere as measured in Earth's reference frame, muons' extremely short lifespan shouldn't allow them to make the trip to the surface, even at the speed of light, but they do nonetheless. From the Earth reference frame, however, this is made possible only by the muon's time being slowed down by time dilation. However, in the muon's frame, the effect is explained by the atmosphere being contracted, shortening the trip.[13]
  • Heavy ions that are spherical when at rest should assume the form of "pancakes" or flat disks when traveling nearly at the speed of light— and in fact, the results obtained from particle collisions can only be explained when the increased nucleon density due to length contraction is considered.[14][15][16]
  • The ionization ability of electrically charged particles with large relative velocities is higher than expected. In pre-relativistic physics the ability should decrease at high velocities, because the time in which ionizing particles in motion can interact with the electrons of other atoms or molecules is diminished; however, in relativity, the higher-than-expected ionization ability can be explained by length contraction of the Coulomb field in frames in which the ionizing particles are moving, which increases their electrical field strength normal to the line of motion.[13][17]
  • In synchrotrons and free-electron lasers, relativistic electrons were injected into an undulator, so that synchrotron radiation is generated. In the proper frame of the electrons, the undulator is contracted which leads to an increased radiation frequency. Additionally, to find out the frequency as measured in the laboratory frame, one has to apply the relativistic Doppler effect. So, only with the aid of length contraction and the relativistic Doppler effect, the extremely small wavelength of undulator radiation can be explained.[18][19]

Reality of length contraction

Minkowski diagram of Einstein's 1911 thought experiment on length contraction. Two rods of rest length are moving with 0.6c in opposite directions, resulting in .

In 1911 Vladimir Varićak asserted that one sees the length contraction in an objective way, according to Lorentz, while it is "only an apparent, subjective phenomenon, caused by the manner of our clock-regulation and length-measurement", according to Einstein.[20][21] Einstein published a rebuttal:

The author unjustifiably stated a difference of Lorentz's view and that of mine concerning the physical facts. The question as to whether length contraction really exists or not is misleading. It doesn't "really" exist, in so far as it doesn't exist for a comoving observer; though it "really" exists, i.e. in such a way that it could be demonstrated in principle by physical means by a non-comoving observer.[22]

— Albert Einstein, 1911

Einstein also argued in that paper, that length contraction is not simply the product of arbitrary definitions concerning the way clock regulations and length measurements are performed. He presented the following thought experiment: Let A'B' and A"B" be the endpoints of two rods of the same proper length L0, as measured on x' and x" respectively. Let them move in opposite directions along the x* axis, considered at rest, at the same speed with respect to it. Endpoints A'A" then meet at point A*, and B'B" meet at point B*. Einstein pointed out that length A*B* is shorter than A'B' or A"B", which can also be demonstrated by bringing one of the rods to rest with respect to that axis.[22]

Paradoxes

Due to superficial application of the contraction formula, some paradoxes can occur. Examples are the ladder paradox and Bell's spaceship paradox. However, those paradoxes can be solved by a correct application of the relativity of simultaneity. Another famous paradox is the Ehrenfest paradox, which proves that the concept of rigid bodies is not compatible with relativity, reducing the applicability of Born rigidity, and showing that for a co-rotating observer the geometry is in fact non-Euclidean.

Visual effects

Formula on a wall in Leiden, Netherlands. Lorentz was chair of theoretical physics at the University of Leiden (1877-1910).

Length contraction refers to measurements of position made at simultaneous times according to a coordinate system. This could suggest that if one could take a picture of a fast moving object, that the image would show the object contracted in the direction of motion. However, such visual effects are completely different measurements, as such a photograph is taken from a distance, while length contraction can only directly be measured at the exact location of the object's endpoints. It was shown by several authors such as Roger Penrose and James Terrell that moving objects generally do not appear length contracted on a photograph.[23] This result was popularized by Victor Weisskopf in a Physics Today article.[24] For instance, for a small angular diameter, a moving sphere remains circular and is rotated.[25] This kind of visual rotation effect is called Penrose-Terrell rotation.[26]

Derivation

Length contraction can be derived in several ways:

Known moving length

In an inertial reference frame S, let and denote the endpoints of an object in motion. In this frame the object's length is measured, according to the above conventions, by determining the simultaneous positions of its endpoints at . Meanwhile the proper length of this object, as measured in its rest frame S', can be calculated by using the Lorentz transformation. Transforming the time coordinates from S into S' results in different times, but this is not problematic, since the object is at rest in S' where it does not matter when the endpoints are measured. Therefore the transformation of the spatial coordinates suffices, which gives:[7]


čítajte viac o Length_contraction


čítajte viac na tomto odkaze: Length contraction



Hladanie1.

Special relativity
File:World line.svg
Principle of relativity
Theory of relativity
Formulations of special relativity
Postulates of special relativity
Inertial frame of reference
Speed of light
Maxwell's equations
Lorentz transformation
Time dilation
Mass in special relativity
Mass–energy equivalence
Relativity of simultaneity
Relativistic Doppler effect
Thomas precession
Relativistic disk
Bell's spaceship paradox
Ehrenfest paradox
Spacetime
Minkowski space
Minkowski diagram
World line
Light cone
Dynamics (mechanics)
Proper time
Invariant mass
Four-momentum
History of special relativity
Galilean invariance
Galilean transformation
Aether theories
Albert Einstein
Arnold Sommerfeld
Albert A. Michelson
Edward W. Morley
George Francis FitzGerald
Gustav Herglotz
Hendrik Lorentz
Henri Poincaré
Hermann Minkowski
Hippolyte Fizeau
Max Abraham
Max Born
Max Planck
Max von Laue
Paul Ehrenfest
Richard C. Tolman
Paul Dirac
File:Stylised atom with three Bohr model orbits and stylised nucleus.svg
Portal:Physics
Category:Special relativity
Template:Special relativity sidebar
Template talk:Special relativity sidebar
Special:EditPage/Template:Special relativity sidebar
File:Relativistic wheels.gif
Proper length
Rest frame
Hendrik Lorentz
George Francis FitzGerald
Speed of light
History of special relativity
George Francis FitzGerald
Hendrik Antoon Lorentz
Michelson–Morley experiment
Lorentz ether theory#Length contraction
Oliver Heaviside
Ad hoc hypothesis
Joseph Larmor
Henri Poincaré
Electromagnetic mass#Poincaré stresses and 4/3 problem
Albert Einstein
Hermann Minkowski
Spacetime
File:Observer in special relativity.svg
Inertial frame of reference
Proper length
File:Lorentzkontraktion.svg
Einstein synchronization
Zero of a function
Relativity of simultaneity
Proper time
Relativity of simultaneity
Time dilation
Lorentz transformation
Lorentz factor
Lorentz transformations
Minkowski diagram
Spacetime
Relativistic electromagnetism
André-Marie Ampère
Drift velocity
Wikipedia:Citation needed
Tests of special relativity
Trouton–Rankine experiment
Michelson–Morley experiment
Kennedy–Thorndike experiment
Muon
Time dilation
Ion
Ionization
Coulomb's law
Synchrotron
Free-electron laser
Undulator
Synchrotron radiation
Relativistic Doppler effect
File:EinsteinContraction.svg
Thought experiment
Vladimir Varićak
Ladder paradox
Bell's spaceship paradox
Ehrenfest paradox
Rigid body
Born rigidity
Non-Euclidean Geometry
Terrell rotation
File:Lorentz contractie - mural Leiden, 2017.jpg
University of Leiden
Roger Penrose
Victor Weisskopf
Length contraction
Length contraction
Main Page
Wikipedia:Contents
Portal:Current events
Special:Random
Wikipedia:About
Wikipedia:Contact us
Special:FundraiserRedirector?utm source=donate&utm medium=sidebar&utm campaign=C13 en.wikipedia.org&uselang=en
Help:Contents
Help:Introduction
Wikipedia:Community portal
Special:RecentChanges
Wikipedia:File upload wizard
Main Page
Special:Search
Help:Introduction
Special:MyContributions
Special:MyTalk
Lorentzkontraktion
تقلص الأطوال
Contraición de Lorentz
দৈর্ঘ্য সংকোচন
Contracció de Lorentz
Kontrakce délek
Længdeforkortelse
Lorentzkontraktion
Contracción de Lorentz
Lorentzen uzkurdura
انقباض طول
Contraction des longueurs
Contracción de Lorentz
길이 수축
Երկարության կրճատում
Kontrakcija dužine
Kontraksi panjang
Contrazione delle lunghezze
Hosszkontrakció
Контракција на должината
Lengtecontractie
長さの収縮
Lengdekontraksjon
Lengdekontraksjon
Wzór Lorentza
Contração do comprimento
Contracția Lorentz
Лоренцево сокращение
Lorentz contraction
Kontrakcija dužine
Skraćenje dužine
Längdkontraktion
நீளச் சுருக்கம்
Лоренцеве укорочення
لمبائی کا سکڑاؤ
Co ngắn chiều dài
長度收縮
长度收缩
Special:EntityPage/Q836595#sitelinks-wikipedia
Length contraction
Talk:Length contraction
Length contraction
Length contraction
Special:WhatLinksHere/Length contraction
Special:RecentChangesLinked/Length contraction
Wikipedia:File Upload Wizard
Special:SpecialPages
Special:EntityPage/Q836595
A Roller Coaster Ride through Relativity/Length Contraction
Length contraction
Length contraction
Main Page
Wikipedia:Contents
Portal:Current events
Special:Random
Wikipedia:About
Wikipedia:Contact us
Special:FundraiserRedirector?utm source=donate&utm medium=sidebar&utm campaign=C13 en.wikipedia.org&uselang=en
Help:Contents
Help:Introduction
Wikipedia:Community portal
Special:RecentChanges
Wikipedia:File upload wizard
Main Page
Special:Search
Help:Introduction
Special:MyContributions
Special:MyTalk
Lorentzkontraktion
تقلص الأطوال
Contraición de Lorentz
দৈর্ঘ্য সংকোচন
Contracció de Lorentz
Kontrakce délek
Længdeforkortelse
Lorentzkontraktion
Contracción de Lorentz
Lorentzen uzkurdura
انقباض طول
Contraction des longueurs
Contracción de Lorentz
길이 수축
Երկարության կրճատում
Kontrakcija dužine
Kontraksi panjang
Contrazione delle lunghezze
Hosszkontrakció
Контракција на должината
Lengtecontractie
長さの収縮
Lengdekontraksjon
Lengdekontraksjon
Wzór Lorentza
Contração do comprimento
Contracția Lorentz
Лоренцево сокращение
Lorentz contraction
Kontrakcija dužine
Skraćenje dužine
Längdkontraktion
நீளச் சுருக்கம்
Лоренцеве укорочення
لمبائی کا سکڑاؤ
Co ngắn chiều dài
長度收縮
长度收缩
Special:EntityPage/Q836595#sitelinks-wikipedia
Length contraction
Talk:Length contraction
Length contraction
Length contraction
Special:WhatLinksHere/Length contraction
Special:RecentChangesLinked/Length contraction
Wikipedia:File Upload Wizard
Special:SpecialPages
Special:EntityPage/Q836595
A Roller Coaster Ride through Relativity/Length Contraction
Length contraction
Length contraction
Main Page
Wikipedia:Contents
Portal:Current events
Special:Random
Wikipedia:About
Wikipedia:Contact us
Special:FundraiserRedirector?utm source=donate&utm medium=sidebar&utm campaign=C13 en.wikipedia.org&uselang=en
Help:Contents
Help:Introduction
Wikipedia:Community portal
Special:RecentChanges
Wikipedia:File upload wizard
Main Page
Special:Search
Help:Introduction
Special:MyContributions
Special:MyTalk
Lorentzkontraktion
تقلص الأطوال
Contraición de Lorentz
দৈর্ঘ্য সংকোচন
Contracció de Lorentz
Kontrakce délek
Længdeforkortelse
Lorentzkontraktion
Contracción de Lorentz
Lorentzen uzkurdura
انقباض طول
Contraction des longueurs
Contracción de Lorentz
길이 수축
Երկարության կրճատում
Kontrakcija dužine
Kontraksi panjang
Contrazione delle lunghezze
Hosszkontrakció
Контракција на должината
Lengtecontractie
長さの収縮
Lengdekontraksjon
Lengdekontraksjon
Wzór Lorentza
Contração do comprimento
Contracția Lorentz
Лоренцево сокращение
Lorentz contraction
Kontrakcija dužine
Skraćenje dužine
Längdkontraktion
நீளச் சுருக்கம்
Лоренцеве укорочення
لمبائی کا سکڑاؤ
Co ngắn chiều dài
長度收縮
长度收缩
Special:EntityPage/Q836595#sitelinks-wikipedia
Length contraction
Talk:Length contraction
Length contraction
Length contraction
Updating...x




Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.