Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

List of device bandwidths

This is a list of interface bit rates, is a measure of information transfer rates, or digital bandwidth capacity, at which digital interfaces in a computer or network can communicate over various kinds of buses and channels. The distinction can be arbitrary between a computer bus, often closer in space, and larger telecommunications networks. Many device interfaces or protocols (e.g., SATA, USB, SAS, PCIe) are used both inside many-device boxes, such as a PC, and one-device-boxes, such as a hard drive enclosure. Accordingly, this page lists both the internal ribbon and external communications cable standards together in one sortable table.

Factors limiting actual performance, criteria for real decisions

Most of the listed rates are theoretical maximum throughput measures; in practice, the actual effective throughput is almost inevitably lower in proportion to the load from other devices (network/bus contention), physical or temporal distances, and other overhead in data link layer protocols etc. The maximum goodput (for example, the file transfer rate) may be even lower due to higher layer protocol overhead and data packet retransmissions caused by line noise or interference such as crosstalk, or lost packets in congested intermediate network nodes. All protocols lose something, and the more robust ones that deal resiliently with very many failure situations tend to lose more maximum throughput to get higher total long term rates.

Device interfaces where one bus transfers data via another will be limited to the throughput of the slowest interface, at best. For instance, SATA revision 3.0 (6 Gbit/s) controllers on one PCI Express 2.0 (5 Gbit/s) channel will be limited to the 5 Gbit/s rate and have to employ more channels to get around this problem. Early implementations of new protocols very often have this kind of problem. The physical phenomena on which the device relies (such as spinning platters in a hard drive) will also impose limits; for instance, no spinning platter shipping in 2009 saturates SATA revision 2.0 (3 Gbit/s), so moving from this 3 Gbit/s interface to USB 3.0 at 4.8 Gbit/s for one spinning drive will result in no increase in realized transfer rate.

Contention in a wireless or noisy spectrum, where the physical medium is entirely out of the control of those who specify the protocol, requires measures that also use up throughput. Wireless devices, BPL, and modems may produce a higher line rate or gross bit rate, due to error-correcting codes and other physical layer overhead. It is extremely common for throughput to be far less than half of theoretical maximum, though the more recent technologies (notably BPL) employ preemptive spectrum analysis to avoid this and so have much more potential to reach actual gigabit rates in practice than prior modems.

Another factor reducing throughput is deliberate policy decisions made by Internet service providers that are made for contractual, risk management, aggregation saturation, or marketing reasons. Examples are rate limiting, bandwidth throttling, and the assignment of IP addresses to groups. These practices tend to minimize the throughput available to every user, but maximize the number of users that can be supported on one backbone.

Furthermore, chips are often not available in order to implement the fastest rates. AMD, for instance, does not support the 32-bit HyperTransport interface on any CPU it has shipped as of the end of 2009. Additionally, WiMAX service providers in the US typically support only up to 4 Mbit/s as of the end of 2009.

Choosing service providers or interfaces based on theoretical maxima is unwise, especially for commercial needs. A good example is large scale data centers, which should be more concerned with price per port to support the interface, wattage and heat considerations, and total cost of the solution. Because some protocols such as SCSI and Ethernet now operate many orders of magnitude faster than when originally deployed, scalability of the interface is one major factor, as it prevents costly shifts to technologies that are not backward compatible. Underscoring this is the fact that these shifts often happen involuntarily or by surprise, especially when a vendor abandons support for a proprietary system.

Conventions

By convention, bus and network data rates are denoted either in bits per second (bit/s) or bytes per second (B/s). In general, parallel interfaces are quoted in B/s and serial in bit/s. The more commonly used is shown below in bold type.

On devices like modems, bytes may be more than 8 bits long because they may be individually padded out with additional start and stop bits; the figures below will reflect this. Where channels use line codes (such as Ethernet, Serial ATA, and PCI Express), quoted rates are for the decoded signal.

The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate.

The use of decimal prefixes is standard in data communications.

Bandwidths

The figures below are grouped by network or bus type, then sorted within each group from lowest to highest bandwidth; gray shading indicates a lack of known implementations.

As stated above, all quoted bandwidths are for each direction. Therefore, for duplex interfaces (capable of simultaneous transmission both ways), the stated values are simplex (one way) speeds, rather than total upstream+downstream.

Time Signal Station to Radio Clock

Technology Max. rate Year
IRIG and related 1 bit/s ~0.125 characters/s[1][2] ?

Teletypewriter (TTY) or telecommunications device for the deaf (TDD)

Technology Max. rate Year
TTY (V.18) 45.4545 bit/s 6 characters/s[3] 1994[4]
TTY (V.18) 50 bit/s 6.6 characters/s 1994
NTSC Line 21 Closed Captioning kbit/s ~100 characters/s 1976[5]

Modems (narrowband and broadband)

Narrowband (POTS: 4 kHz channel)

Technology Rate Rate ex. overhead Year
Morse code (skilled operator) 0.021 kbit/s[6] characters per second (cps) (~40 wpm)[7] 1844
Normal human speech 0.039 kbit/s[8] prehistoric
Teleprinter (50 baud) 0.05 kbit/s 404 operations per minute 1940x
Modem 110 baud (Bell 101) 0.11 kbit/s 0.010 kB/s (~10 cps)[9] 1959
Modem 300 (300 baud; Bell 103 or V.21) 0.3 kbit/s 0.03 kB/s (~30 cps)[9] 1962[10]
Modem 1200/75 (600 baud; V.23) 1.2/0.075 kbit/s 0.12/0.0075 kB/s (~120 cps)[9] 1964(?)[11]
Modem 1200 (600 baud; Vadic VA3400, Bell 212A, or V.22) 1.2 kbit/s 0.12 kB/s (~120 cps)[9] 1976
Modem 1200 (Bell 202C, 202D) 1.2 kbit/s 0.15 kB/s (~150 cps) ?
Modem 2000 (Bell 201A) 2 kbit/s 0.25 kB/s (~250 cps) ?
Modem 2400 (Bell 201B) 2.4 kbit/s 0.3 kB/s (~300 cps) ?
Modem 2400 (600 baud; V.22bis) 2.4 kbit/s 0.3 kB/s[9] 1984[11]
Modem 4800/75 (1600 baud; V.27ter) 4.8/0.075 kbit/s 0.6/0.0075 kB/s[9] 1976[11]
Modem 4800 (1600 baud, Bell 208A, 208B) 4.8 kbit/s 0.6 kB/s
Modem 9600 (2400 baud; V.32) 9.6 kbit/s 1.2 kB/s[9] 1984[11]
Modem 14.4 (2400 baud; V.32bis) 14.4 kbit/s 1.8 kB/s[9] 1991[10]
Modem 28.8 (3200 baud; V.34-1994) 28.8 kbit/s 3.6 kB/s[9] 1994
Modem 33.6 (3429 baud; V.34-1996/98) 33.6 kbit/s 4.2 kB/s[9] 1996[11]
Modem 56k (8000/3429 baud; V.90) 56.0/33.6 kbit/s[12] 7/4.2 kB/s 1998
Modem 56k (8000/8000 baud; V.92) 56.0/48.0 kbit/s[12] 7/6 kB/s 2001
Modem data compression (variable; V.92/V.44) 56.0–320.0 kbit/s[12] 7–40 kB/s 2000[11]
ISP-side text/image compression (variable) 56.0–1000.0 kbit/s 7–125 kB/s 1998[11]
ISDN Basic Rate Interface (single/dual channel) 64/128 kbit/s[13] 8/16 kB/s 1986[14]
IDSL (dual ISDN + 16 kbit/s data channels) 144 kbit/s 18 kB/s 2000[15]

Broadband (hundreds of kHz to GHz wide)

Technology Rate Rate ex. overhead Year
ADSL (G.lite) 1536/512 kbit/s 192/64 kB/s 1998
HDSL ITU G.991.1 a.k.a. DS1 1544 kbit/s 193 kB/s 1998[16]
MSDSL 2000 kbit/s 250 kB/s ?
SDSL 2320 kbit/s 290 kB/s ?
SHDSL ITU G.991.2 5690 kbit/s 711 kB/s 2001
ADSL (G.dmt) ITU G.992.1 8192/1024 kbit/s 1024/128 kB/s 1999
ADSL2 ITU G.992.3/4 12288/1440 kbit/s 1536/180 kB/s 2002
ADSL2+ ITU G.992.5 24576/3584 kbit/s 3072/448 kB/s 2003
DOCSIS 1.0[17] (cable modem) 38/9 Mbit/s 4.75/1.125 MB/s 1997
DOCSIS 2.0[18] (cable modem) 38/27 Mbit/s 4.75/3.375 MB/s 2002
VDSL ITU G.993.1 52 Mbit/s MB/s 2001
VDSL2 ITU G.993.2 100 Mbit/s 12.5 MB/s 2006
Uni-DSL 200 Mbit/s 25 MB/s 2006
VDSL2 ITU G.993.2 Amendment 1 (11/15) 300 Mbit/s 37.5 MB/s 2015
BPON (G.983) (fiber optic service) 622/155 Mbit/s 77.7/19.3 MB/s 2005[19]
G.fast ITU G.9700 1000 Mbit/s 125 MB/s 2014
EPON (802.3ah) (fiber optic service) 1000/1000 Mbit/s 125/125 MB/s 2008
DOCSIS 3.0[20] (cable modem) 1216/216 Mbit/s 152/27 MB/s 2006
GPON (G.984) (fiber optic service) 2488/1244 Mbit/s 311/155.5 MB/s 2008[21]
DOCSIS 3.1[22] (cable modem) 10/2 Gbit/s 1.25/0.25 GB/s 2013
10G-PON (G.987) (fiber optic service) 10/2.5 Gbit/s 1.25/0.3125 GB/s 2012[23]
DOCSIS 4.0 (cable modem) 10/6 Gbit/s 1.25/0.75 GB/s 2017
XGS-PON (G.9807.1) (fiber optic service) 10/10 Gbit/s 1.25/1.25 GB/s 2016
NG-PON2 (G.989) (fiber optic service) 40/10 Gbit/s 5/1.25 GB/s 2015[24]

Mobile telephone interfaces

Zdroj:https://en.wikipedia.org?pojem=List_of_device_bandwidths
>Text je dostupný pod licencí Creative Commons Uveďte autora – Zachovejte licenci, případně za dalších podmínek. Podrobnosti naleznete na stránce Podmínky užití.
Zdroj: Wikipedia.org - čítajte viac o List of device bandwidths





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.


Technology Download rate Upload rate Year
GSM CSD (2G) 14.4 kbit/s[25] 1.8 kB/s 14.4 kbit/s 1.8 kB/s
HSCSD 57.6 kbit/s 5.4 kB/s 14.4 kbit/s 1.8 kB/s
GPRS (2.5G) 57.6 kbit/s 7.2 kB/s 28.8 kbit/s 3.6 kB/s
WiDEN 100 kbit/s 12.5 kB/s 100 kbit/s 12.5 kB/s
CDMA2000 1×RTT 153 kbit/s 18 kB/s 153 kbit/s 18 kB/s
EDGE (2.75G) (type 1 MS) 236.8 kbit/s 29.6 kB/s 236.8 kbit/s 29.6 kB/s 2002
UMTS 3G 384 kbit/s 48 kB/s 384 kbit/s 48 kB/s
EDGE (type 2 MS) 473.6 kbit/s 59.2 kB/s 473.6 kbit/s