Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

List of quasars

This article contains lists of quasars. More than a million quasars have been observed,[1] so any list on Wikipedia is necessarily a selection of them.

Proper naming of quasars are by Catalogue Entry, Qxxxx±yy using B1950 coordinates, or QSO Jxxxx±yyyy using J2000 coordinates. They may also use the prefix QSR. There are currently no quasars that are visible to the naked eye.

List of quasars

This is a list of exceptional quasars for characteristics otherwise not separately listed

Quasar Notes
Twin Quasar Associated with a possible planet microlensing event in the gravitational lens galaxy that is doubling the Twin Quasar's image.
QSR J1819+3845 Proved interstellar scintillation due to the interstellar medium.
CTA-102 In 1965, Soviet astronomer Nikolai S. Kardashev declared that this quasar was sending coded messages from an alien civilization.[2]
CID-42 Its supermassive black hole is being ejected and will one day become a displaced quasar.
TON 618 TON 618 is a very distant and extremely luminous quasar—technically, a hyperluminous, broad-absorption line, radio-loud quasar—located near the North Galactic Pole in the constellation Canes Venatici.

List of named quasars

This is a list of quasars, with a common name, instead of a designation from a survey, catalogue or list.

Quasar Origin of name Notes
Twin Quasar From the fact that two images of the same quasar are produced by gravitational lensing.
Einstein Cross From the fact that gravitational lensing of the quasar forms a near perfect Einstein cross, a concept in gravitational lensing.
Triple Quasar From the fact that there are three bright images of the same gravitationally lensed quasar. There are actually four images; the fourth is faint.
Cloverleaf From its appearance having similarity to the leaf of a clover. It has been gravitationally lensed into four images, of roughly similar appearance.
Teacup Galaxy The name comes from the shape of the extended emission, which is shaped like the handle of a teacup. The handle is a bubble shaped by quasar winds or small-scale radio jets. Low redshift, highly obscured type 2 quasar.

List of multiply imaged quasars

This is a list of quasars that as a result of gravitational lensing appear as multiple images on Earth.

Quasar Images Lens Notes
Twin Quasar 2 YGKOW G1 First gravitationally lensed object discovered
Triple Quasar (PG 1115+080) 4 Originally discovered as 3 lensed images, the fourth image is faint. It was the second gravitationally lensed quasar discovered.
Einstein Cross 4 Huchra's Lens First Einstein Cross discovered
RX J1131-1231's quasar 4 RX J1131-1231's elliptical galaxy RX J1131-1231 is the name of the complex, quasar, host galaxy and lensing galaxy, together. The quasar's host galaxy is also lensed into a Chwolson ring about the lensing galaxy. The four images of the quasar are embedded in the ring image.
Cloverleaf 4[3] Brightest known high-redshift source of CO emission[4]
QSO B1359+154 6 CLASS B1359+154 and three more galaxies First sextuply-imaged galaxy
SDSS J1004+4112 5 Galaxy cluster at z = 0.68 First quasar discovered to be multiply image-lensed by a galaxy cluster and currently the third largest quasar lens with the separation between images of 15″[5][6][7]
SDSS J1029+2623 3 Galaxy cluster at z = 0.6 The current largest-separation quasar lens with 22.6″ separation between furthest images[8][9][10]
SDSS J2222+2745 6[11] Galaxy cluster at z = 0.49[12] First sextuply-lensed galaxy[11] Third quasar discovered to be lensed by a galaxy cluster.[12] Quasar located at z = 2.82[12]

List of visual quasar associations

This is a list of double quasars, triple quasars, and the like, where quasars are close together in line-of-sight, but not physically related.

Quasars Count Notes
QSO 1548+115
4C 11.50 (z = 0.436)
QSO B1548+115B (z = 1.901)
2 [13][14]
QSO 1146+111 8 [15]
z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion

List of physical quasar groups

This is a list of binary quasars, trinary quasars, and the like, where quasars are physically close to each other.

Quasars Count Notes
quasars of SDSS J0841+3921 protocluster 4 First quasar quartet discovered.[16][17]
LBQS 1429-008 (QQQ 1432-0106) 3 First quasar triplet discovered.
It was first discovered as a binary quasar, before the third quasar was found.[18]
QQ2345+007 (Q2345+007)
Q2345+007A
Q2345+007B
2 Originally thought to be a doubly imaged quasar, but actually a quasar couplet.[19]
QQQ J1519+0627 3 [20]

Large Quasar Groups

Large quasar groups (LQGs) are bound to a filament of mass, and not directly bound to each other.

LQG Count Notes
Webster LQG
(LQG 1)
5 First LQG discovered. At the time of its discovery, it was the largest structure known.[21][22]
Huge-LQG
(U1.27)
73 The largest structure known in the observable universe, as of 2013.[23][24]

List of quasars with apparent superluminal jet motion

This is a list of quasars with jets that appear to be superluminal due to relativistic effects and line-of-sight orientation. Such quasars are sometimes referred to as superluminal quasars.

Quasar Superluminality Notes
3C 279 4c First quasar discovered with superluminal jets[25][26][27][28][29]
3C 179 7.6c Fifth discovered, first with double lobes[30]
3C 273 This is also the first quasar ever identified[31]
3C 216
3C 345 [31][32]
3C 380
4C 69.21
(Q1642+690, QSO B1642+690)
8C 1928+738
(Q1928+738, QSO J1927+73, Quasar J192748.6+735802)
PKS 0637-752
QSO B1642+690

Quasars that have a recessional velocity greater than the speed of light (c) are very common. Any quasar with z > 1 is receding faster than c, while z exactly equal to 1 indicates recession at the speed of light.[33] Early attempts to explain superluminal quasars resulted in convoluted explanations with a limit of z = 2.326, or in the extreme z < 2.4.[34] The majority of quasars lie between z = 2 and z = 5.

Firsts

Title Quasar Year Data Notes
First quasar discovered 3C 48 1960 first radio source for which optical identification was found, that was a star-like looking object
First "star" discovered later found to be a quasar
First radio source discovered later found to be a quasar
First quasar identified 3C 273 1962 first radio-"star" found to be at a high redshift with a non-stellar spectrum.
First radio-quiet quasar QSO B1246+377 (BSO 1) 1965 The first radio-quiet quasi-stellar objects (QSO) were called Blue Stellar Objects or BSO, because they appeared like stars and were blue in color. They also had spectra and redshifts like radio-loud quasi-stellar radio-sources (QSR), so became quasars.[27][35][36]
First host galaxy of a quasar discovered 3C 48 1982
First quasar found to seemingly not have a host galaxy HE0450-2958 (Naked Quasar) 2005 Some disputed observations suggest a host galaxy, others do not.
First multi-core quasar PG 1302-102 2014 Binary supermassive black holes within the quasar [37][38]
First quasar containing a recoiling supermassive black hole SDSS J0927+2943 2008 Two optical emission line systems separated by 2650 km/s
First gravitationally lensed quasar identified Twin Quasar 1979 Lensed into 2 images The lens is a galaxy known as YGKOW G1
First quasar found with a jet with apparent superluminal motion 3C 279 1971 [25][26][27]
First quasar found with the classic double radio-lobe structure 3C 47 1964
First quasar found to be an X-ray source 3C 273 1967 [39]
First "dustless" quasar found QSO J0303-0019 and QSO J0005-0006 2010 [40][41][42][43][44][45][46]
First Large Quasar Group discovered Webster LQG
(LQG 1)
1982 [21][22]

Extremes

Title Quasar Data Notes
Brightest 3C 273 Apparent magnitude of ~12.9 Absolute magnitude: −26.7
Seemingly optically brightest APM 08279+5255 Seeming absolute magnitude of −32.2 This quasar is gravitationally lensed; its actual absolute magnitude is estimated to be −30.5
Most luminous SMSS J215728.21-360215.1 Absolute magnitude of −32.36 Highest absolute magnitude discovered thus far.
Most powerful quasar radio source 3C 273 Also the most powerful radio source in the sky
Most powerful SMSS J215728.21-360215.1
Most variable quasar radio source QSO J1819+3845 (Q1817+387) Also the most variable extrasolar radio source
Least variable quasar radio source
Most variable quasar optical source
Least variable quasar optical source
Most distant UHZ1 z = 10.1 Most distant quasar known as of 2023[47]
Most distant radio-quiet quasar
Most distant radio-loud quasar QSO J1427+3312 z = 6.12 Found June 2008[48][49]
Most distant blazar quasar PSO J0309+27 z > 6
Least distant Markarian 231 600 Mly [50] inactive: IC 2497
Largest Large Quasar Group Huge-LQG
(U1.27)
73 quasars [23][24]
Fastest Growing Quasar SMSS J052915.80–435152.0 (QSO J0529-4351) ~ 413 solar masses per year (using standard radiative efficiency); ~ 370 solar masses per year (using best-fit slim disc model) [51][52]

First quasars found

Zdroj:https://en.wikipedia.org?pojem=List_of_quasars
>Text je dostupný pod licencí Creative Commons Uveďte autora – Zachovejte licenci, případně za dalších podmínek. Podrobnosti naleznete na stránce Podmínky užití.
Zdroj: Wikipedia.org - čítajte viac o List of quasars





Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.


First 10 Quasars Identified
Rank Quasar Date of discovery Notes
1 3C 273 1963 [53]
2 3C 48 1963 [53]
3 3C 47 1964 [53]
3 3C 147 1964 [53]
5 CTA 102