Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Logarithm

Plots of logarithm functions, with three commonly used bases. The special points logbb = 1 are indicated by dotted lines, and all curves intersect in logb 1 = 0.

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g. since 1000 = 10 × 10 × 10 = 103, the "logarithm base 10" of 1000 is 3, or log10 (1000) = 3. The logarithm of x to base b is denoted as logb (x), or without parentheses, logbx, or even without the explicit base, log x, when no confusion is possible, or when the base does not matter such as in big O notation.

The logarithm base 10 (that is b = 10) is called the decimal or common logarithm and is commonly used in science and engineering. The natural logarithm has the number e (that is b ≈ 2.718) as its base; its use is widespread in mathematics and physics, because of its simpler integral and derivative. The binary logarithm uses base 2 (that is b = 2) and is frequently used in computer science.

Logarithms were introduced by John Napier in 1614 as a means of simplifying calculations.[1] They were rapidly adopted by navigators, scientists, engineers, surveyors and others to perform high-accuracy computations more easily. Using logarithm tables, tedious multi-digit multiplication steps can be replaced by table look-ups and simpler addition. This is possible because of the fact—important in its own right—that the logarithm of a product is the sum of the logarithms of the factors:

provided that b, x and y are all positive and b ≠ 1. The slide rule, also based on logarithms, allows quick calculations without tables, but at lower precision. The present-day notion of logarithms comes from Leonhard Euler, who connected them to the exponential function in the 18th century, and who also introduced the letter e as the base of natural logarithms.[2]

Logarithmic scales reduce wide-ranging quantities to smaller scopes. For example, the decibel (dB) is a unit used to express ratio as logarithms, mostly for signal power and amplitude (of which sound pressure is a common example). In chemistry, pH is a logarithmic measure for the acidity of an aqueous solution. Logarithms are commonplace in scientific formulae, and in measurements of the complexity of algorithms and of geometric objects called fractals. They help to describe frequency ratios of musical intervals, appear in formulas counting prime numbers or approximating factorials, inform some models in psychophysics, and can aid in forensic accounting.

The concept of logarithm as the inverse of exponentiation extends to other mathematical structures as well. However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.

Motivation

Graph showing a logarithmic curve, crossing the x-axis at x= 1 and approaching minus infinity along the y-axis.
The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log2(8) = 3 and 23 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it.

Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations. The inverse of addition is subtraction, and the inverse of multiplication is division. Similarly, a logarithm is the inverse operation of exponentiation. Exponentiation is when a number b, the base, is raised to a certain power y, the exponent, to give a value x; this is denoted

For example, raising 2 to the power of 3 gives 8:

The logarithm of base b is the inverse operation, that provides the output y from the input x. That is, is equivalent to if b is a positive real number. (If b is not a positive real number, both exponentiation and logarithm can be defined but may take several values, which makes definitions much more complicated.)

One of the main historical motivations of introducing logarithms is the formula

which allowed (before the invention of computers) reducing computation of multiplications and divisions to additions, subtractions and logarithm table looking.

Definition

Given a positive real number b such that b ≠ 1, the logarithm of a positive real number x with respect to base b[nb 1] is the exponent by which b must be raised to yield x. In other words, the logarithm of x to base b is the unique real number y such that .[3]

The logarithm is denoted "logbx" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x").

An equivalent and more succinct definition is that the function logb is the inverse function to the function .

Examples

  • log2 16 = 4, since 24 = 2 × 2 × 2 × 2 = 16.
  • Logarithms can also be negative: since
  • log10 150 is approximately 2.176, which lies between 2 and 3, just as 150 lies between 102 = 100 and 103 = 1000.
  • For any base b, logbb = 1 and logb 1 = 0, since b1 = b and b0 = 1, respectively.

Logarithmic identities

Several important formulas, sometimes called logarithmic identities or logarithmic laws, relate logarithms to one another.[4]

Product, quotient, power, and root

The logarithm of a product is the sum of the logarithms of the numbers being multiplied; the logarithm of the ratio of two numbers is the difference of the logarithms. The logarithm of the p-th power of a number is p times the logarithm of the number itself; the logarithm of a p-th root is the logarithm of the number divided by p. The following table lists these identities with examples. Each of the identities can be derived after substitution of the logarithm definitions or in the left hand sides.

Formula Example
Product
Quotient
Power
Root

Change of base

The logarithm logbx can be computed from the logarithms of x and b with respect to an arbitrary base k using the following formula:

Derivation of the conversion factor between logarithms of arbitrary base

Starting from the defining identity

we can apply logk to both sides of this equation, to get