Upozornenie: Prezeranie týchto stránok je určené len pre návštevníkov nad 18 rokov!
Zásady ochrany osobných údajov.
Používaním tohto webu súhlasíte s uchovávaním cookies, ktoré slúžia na poskytovanie služieb, nastavenie reklám a analýzu návštevnosti. OK, súhlasím









A | B | C | D | E | F | G | H | CH | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Order of magnitude (numbers)
 

The logarithmic scale can compactly represent the relationship among variously sized numbers.

This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantities and probabilities. Each number is given a name in the short scale, which is used in English-speaking countries, as well as a name in the long scale, which is used in some of the countries that do not have English as their national language.

Smaller than 10−100 (one googolth)

Chimpanzee probably not typing Hamlet
  • Mathematics – random selections: Approximately 10−183,800 is a rough first estimate of the probability that a typing "monkey", or an English-illiterate typing robot, when placed in front of a typewriter, will type out William Shakespeare's play Hamlet as its first set of inputs, on the precondition it typed the needed number of characters.[1] However, demanding correct punctuation, capitalization, and spacing, the probability falls to around 10−360,783.[2]
  • Computing: 2.2×10−78913 is approximately equal to the smallest non-zero value that can be represented by an octuple-precision IEEE floating-point value.
    • 1×10−6176 is equal to the smallest non-zero value that can be represented by a quadruple-precision IEEE decimal floating-point value.
    • 6.5×10−4966 is approximately equal to the smallest non-zero value that can be represented by a quadruple-precision IEEE floating-point value.
    • 3.6×10−4951 is approximately equal to the smallest non-zero value that can be represented by an 80-bit x86 double-extended IEEE floating-point value.
    • 1×10−398 is equal to the smallest non-zero value that can be represented by a double-precision IEEE decimal floating-point value.
    • 4.9×10−324 is approximately equal to the smallest non-zero value that can be represented by a double-precision IEEE floating-point value.
    • 1.5×10−157 is approximately equal to the probability that in a randomly selected group of 365 people, all of them will have different birthdays.[3]
    • 1×10−101 is equal to the smallest non-zero value that can be represented by a single-precision IEEE decimal floating-point value.

10−100 to 10−30

1/52! chance of a specific shuffle
  • Mathematics: The chances of shuffling a standard 52-card deck in any specific order is around 1.24×10−68 (or exactly 152!)[4]
  • Computing: The number 1.4×10−45 is approximately equal to the smallest positive non-zero value that can be represented by a single-precision IEEE floating-point value.

10−30

(0.000000000000000000000000000001; 1000−10; short scale: one nonillionth; long scale: one quintillionth)

ISO: quecto- (q)

  • Mathematics: The probability in a game of bridge of all four players getting a complete suit each is approximately 4.47×10−28.[5]

10−27

(0.000000000000000000000000001; 1000−9; short scale: one octillionth; long scale: one quadrilliardth)

ISO: ronto- (r)

10−24

(0.000000000000000000000001; 1000−8; short scale: one septillionth; long scale: one quadrillionth)

ISO: yocto- (y)

10−21

(0.000000000000000000001; 1000−7; short scale: one sextillionth; long scale: one trilliardth)

ISO: zepto- (z)

10−18

Snake eyes

(0.000000000000000001; 1000−6; short scale: one quintillionth; long scale: one trillionth)

ISO: atto- (a)

  • Mathematics: The probability of rolling snake eyes 10 times in a row on a pair of fair dice is about 2.74×10−16.

10−15

(0.000000000000001; 1000−5; short scale: one quadrillionth; long scale: one billiardth)

ISO: femto- (f)

  • Mathematics: The Ramanujan constant, is an almost integer, differing from the nearest integer by approximately 7.5×10−13.

10−12

(0.000000000001; 1000−4; short scale: one trillionth; long scale: one billionth)

ISO: pico- (p)

10−9

(0.000000001; 1000−3; short scale: one billionth; long scale: one milliardth)

ISO: nano- (n)

  • Mathematics – Lottery: The odds of winning the Grand Prize (matching all 6 numbers) in the US Powerball lottery, with a single ticket, under the rules as of October 2015, are 292,201,338 to 1 against, for a probability of 3.422×10−9 (0.0000003422%).
  • Mathematics – Lottery: The odds of winning the Grand Prize (matching all 6 numbers) in the Australian Powerball lottery, with a single ticket, under the rules as of April 2018, are 134,490,400 to 1 against, for a probability of 7.435×10−9 (0.0000007435%).
  • Mathematics – Lottery: The odds of winning the Jackpot (matching the 6 main numbers) in the UK National Lottery, with a single ticket, under the rules as of August 2009, are 13,983,815 to 1 against, for a probability of 7.151×10−8 (0.000007151%).

10−6

(0.000001; 1000−2; long and short scales: one millionth)

ISO: micro- (μ)

Poker hands
Poker hands
Hand Chance
1. Royal flush 0.00015%
2. Straight flush 0.0014%
3. Four of a kind 0.024%
4. Full house 0.14%
5. Flush 0.19%
6. Straight 0.59%
7. Three of a kind 2.1%
8. Two pairs 4.8%
9. One pair 42%
10. No pair 50%
  • Mathematics – Poker: The odds of being dealt a royal flush in poker are 649,739 to 1 against, for a probability of 1.5×10−6 (0.00015%).[8]
  • Mathematics – Poker: The odds of being dealt a straight flush (other than a royal flush) in poker are 72,192 to 1 against, for a probability of 1.4×10−5 (0.0014%).
  • Mathematics – Poker: The odds of being dealt a four of a kind in poker are 4,164 to 1 against, for a probability of 2.4×10−4 (0.024%).

10−3

(0.001; 1000−1; one thousandth)

ISO: milli- (m)

  • Mathematics – Poker: The odds of being dealt a full house in poker are 693 to 1 against, for a probability of 1.4 × 10−3 (0.14%).
  • Mathematics – Poker: The odds of being dealt a flush in poker are 507.8 to 1 against, for a probability of 1.9 × 10−3 (0.19%).
  • Mathematics – Poker: The odds of being dealt a straight in poker are 253.8 to 1 against, for a probability of 4 × 10−3 (0.39%).
  • Physics: α = 0.007297352570(5), the fine-structure constant.

10−2

(0.01; one hundredth)

ISO: centi- (c)

  • Mathematics – Lottery: The odds of winning any prize in the UK National Lottery, with a single ticket, under the rules as of 2003, are 54 to 1 against, for a probability of about 0.018 (1.8%).
  • Mathematics – Poker: The odds of being dealt a three of a kind in poker are 46 to 1 against, for a probability of 0.021 (2.1%).
  • Mathematics – Lottery: The odds of winning any prize in the Powerball, with a single ticket, under the rules as of 2015, are 24.87 to 1 against, for a probability of 0.0402 (4.02%).
  • Mathematics – Poker: The odds of being dealt two pair in poker are 21 to 1 against, for a probability of 0.048 (4.8%).

10−1

(0.1; one tenth)

ISO: deci- (d)

  • Legal history: 10% was widespread as the tax raised for income or produce in the ancient and medieval period; see tithe.
  • Mathematics – Poker: The odds of being dealt only one pair in poker are about 5 to 2 against (2.37 to 1), for a probability of 0.42 (42%).
  • Mathematics – Poker: The odds of being dealt no pair in poker are nearly 1 to 2, for a probability of about 0.5 (50%).

100

Eight planets of the Solar System

(1; one)

101

Ten digits on two human hands

(10; ten)

ISO: deca- (da)

102

128 ASCII characters

(100; hundred)

ISO: hecto- (h)

103

Roman legion (precise size varies)

(1000; thousand)

ISO: kilo- (k)

104

(10000; ten thousand or a myriad)

  • Biology: Each neuron in the human brain is estimated to connect to 10,000 others.
  • Demography: The population of Tuvalu was 10,544 in 2007.
  • Lexicography: 14,500 unique English words occur in the King James Version of the Bible.
  • Zoology: There are approximately 17,500 distinct butterfly species known.[10]
  • Language: There are 20,000–40,000 distinct Chinese characters in more than occasional use.
  • Biology: Each human being is estimated to have 20,000 coding genes.[11]
  • Grammar: Each regular verb in Cherokee can have 21,262 inflected forms.
  • War: 22,717 Union and Confederate soldiers were killed, wounded, or missing in the Battle of Antietam, the bloodiest single day of battle in American history.
  • Computing – Unicode: 42,720 characters are encoded in CJK Unified Ideographs Extension B, the most of any single public-use Unicode block as of Unicode 15.0 (2022).
  • Aviation: As of July 2021, 44,000+ airframes have been built of the Cessna 172, the most-produced aircraft in history.
  • Computing - Fonts: The maximum possible number of glyphs in a TrueType or OpenType font is 65,535 (216-1), the largest number representable by the 16-bit unsigned integer used to record the total number of glyphs in the font.
  • Computing – Unicode: A plane contains 65,536 (216) code points; this is also the maximum size of a Unicode block, and the total number of code points available in the obsolete UCS-2 encoding.
  • Mathematics: 65,537 is the largest known Fermat prime.
  • Memory: As of 2015, the largest number of decimal places of π that have been recited from memory is 70,030.[12]

105

100,000–150,000 strands of human hair

(100000; one hundred thousand or a lakh).

  • Demography: The population of Saint Vincent and the Grenadines was 100,982 in 2009.
  • Biology – Strands of hair on a head: The average human head has about 100,000–150,000 strands of hair.
  • Literature: approximately 100,000 verses (shlokas) in the Mahabharata.
  • Computing – Unicode: 149,186 characters (including control characters) encoded in Unicode as of version 15.0 (2022).
  • Language: 267,000 words in James Joyce's Ulysses.
  • Computing – Unicode: 293,168 code points assigned to a Unicode block as of Unicode 15.0.
  • Genocide: 300,000 people killed in the Rape of Nanking.
  • Language – English words: The New Oxford Dictionary of English contains about 360,000 definitions for English words.
  • Mathematics: 360,000 – The approximate number of entries in The On-Line Encyclopedia of Integer Sequences as of January 2023.[13]
  • Biology – Plants: There are approximately 390,000 distinct plant species known, of which approximately 20% (or 78,000) are at risk of extinction.[14]
  • Biology – Flowers: There are approximately 400,000 distinct flower species on Earth.[15]
  • Literature: 564,000 words in War and Peace by Leo Tolstoy.
  • Literature: 930,000 words in the King James Version of the Bible.
  • Mathematics: There are 933,120 possible combinations on the Pyraminx.
  • Computing – Unicode: There are 974,530 publicly-assignable code points (i.e., not surrogates, private-use code points, or noncharacters) in Unicode.

106

3,674,160 Pocket Cube positions

(1000000; 10002; long and short scales: one million)

ISO: mega- (M)

  • Demography: The population of Riga, Latvia was 1,003,949 in 2004, according to Eurostat.
  • Computing – UTF-8: There are 1,112,064 (220 + 216 - 211) valid UTF-8 sequences (excluding overlong sequences and sequences corresponding to code points used for UTF-16 surrogates or code points beyond U+10FFFF).
  • Computing – UTF-16/Unicode: There are 1,114,112 (220 + 216) distinct values encodable in UTF-16, and, thus (as Unicode is currently limited to the UTF-16 code space), 1,114,112 valid code points in Unicode (1,112,064 scalar values and 2,048 surrogates).
  • Ludology – Number of games: Approximately 1,181,019 video games have been created as of 2019.[16]
  • Biology – Species: The World Resources Institute claims that approximately 1.4 million species have been named, out of an unknown number of total species (estimates range between 2 and 100 million species). Some scientists give 8.8 million species as an exact figure.
  • Genocide: Approximately 800,000–1,500,000 (1.5 million) Armenians were killed in the Armenian genocide.
  • Linguistics: The number of possible conjugations for each verb in the Archi language is 1,502,839.[17]
  • Info: The freedb database of CD track listings has around 1,750,000 entries as of June 2005.
  • Computing – UTF-8: 2,164,864 (221 + 216 + 211 + 27) possible one- to four-byte UTF-8 sequences, if the restrictions on overlong sequences, surrogate code points, and code points beyond U+10FFFF are not adhered to. (Note that not all of these correspond to unique code points.)
  • Mathematics – Playing cards: There are 2,598,960 different 5-card poker hands that can be dealt from a standard 52-card deck.
  • Mathematics: There are 3,149,280 possible positions for the Skewb.
  • Mathematics – Rubik's Cube: 3,674,160 is the number of combinations for the Pocket Cube (2×2×2 Rubik's Cube).
  • Geography/Computing – Geographic places: The NIMA GEOnet Names Server contains approximately 3.88 million named geographic features outside the United States, with 5.34 million names. The USGS Geographic Names Information System claims to have almost 2 million physical and cultural geographic features within the United States.
  • Computing - Supercomputer hardware: 4,981,760 processor cores in the final configuration of the Tianhe-2 supercomputer.
  • Genocide: Approximately 5,100,000–6,200,000 Jews were killed in the Holocaust.
  • Info – Web sites: As of July 5, 2024, the English Wikipedia contains approximately 6.8 million articles in the English language.

107

12,988,816 domino tilings of a checkerboard

(10000000; a crore; long and short scales: ten million)

  • Demography: The population of Haiti was 10,085,214 in 2010.
  • Literature: 11,206,310 words in Devta by Mohiuddin Nawab, the longest continuously published story known in the history of literature.
  • Genocide: An estimated 12 million persons shipped from Africa to the New World in the Atlantic slave trade.
  • Mathematics: 12,988,816 is the number of domino tilings of an 8×8 checkerboard.
  • Genocide/Famine: 15 million is an estimated lower bound for the death toll of the 1959–1961 Great Chinese Famine, the deadliest known famine in human history.
  • War: 15 to 22 million casualties estimated as a result of World War I.
  • Computing: 16,777,216 different colors can be generated using the hex code system in HTML (note that the trichromatic color vision of the human eye can only distinguish between about an estimated 1,000,000 different colors).[18]
  • Science Fiction: In Isaac Asimov's Galactic Empire, in 22,500 CE, there are 25,000,000 different inhabited planets in the Galactic Empire, all inhabited by humans in Asimov's "human galaxy" scenario.
  • Genocide/Famine: 55 million is an estimated upper bound for the death toll of the Great Chinese Famine.
  • Literature: Wikipedia contains a total of around 63 million articles in 344 languages as of July 2024.
  • War: 70 to 85 million casualties estimated as a result of World War II.
  • Mathematics: 73,939,133 is the largest right-truncatable prime.

108

(100000000; long and short scales: one hundred million)







Text je dostupný za podmienok Creative Commons Attribution/Share-Alike License 3.0 Unported; prípadne za ďalších podmienok.
Podrobnejšie informácie nájdete na stránke Podmienky použitia.